

APPLICATIONS

- Water and wastewater engineering
- Oil and gas industry
- Chemical industry
- Energy production/industry
- Paper and pulp industry
- Metal industry
- Mechanical engineering

SPECIAL FEATURES

- High degree of accuracy
- Extremely simple operation
- State-of-the-art diagnosis for empty pipe detection
- Simpler and quicker fault rectification thanks to diagnosis-based help texts
- Digital communication via HART protocol (standard) or PROFIBUS-PA (option)
- Nominal pressure: PN 10, 16, 40, CL150, CL300
- Process connection: flange according to DIN/EN, ASME
- Lining: hard rubber, PTFE, PFA
- Medium temperature: up to 150 °C

Description

General information

The FTI flow FB100 was developed with particular consideration for the growing requirements that are placed on modern flowmeters. The modular device concept offers flexibility, cost-effective operation, and excellent reliability with a long operating life and minimal maintenance costs.

Sensor

Self-cleaning, double-sealing polished measuring electrodes increase the reliability and measurement performance of the device. The high excitation frequency of the sensor means that the FTI flow FB100 has a fast response time as a flow metering system. State-of-the-art filter methods that separate the measurement signal from the interference signal enable precise measurement with outstanding accuracy even under difficult conditions (max. measurement deviation 0.25 % of the measured value).

Diagnostics functions

State-of-the-art diagnostics functions such as "empty pipe detection" and "sensor measurement" monitor the functional capability of the device and the process.

The limit values for the diagnosis parameters can be adjusted on-site. If these limit values are exceeded, an alarm is issued.

The diagnosis data can be extracted via a state-of-the-art Device Type Manager (DTM) for further analysis. Critical states can therefore be detected at an early stage and countermeasures can be taken.

This enables higher productivity and avoids down times.

In the event of a fault, a diagnosis-based help text is displayed which makes it significantly easier and quicker to rectify the fault. This provides maximum process reliability.

Operation

The parameters pre-set in the plant are changed via the user-friendly display and noncontact operating buttons – quickly and easily without the need to open the housing. The easy setup function also guides inexperienced users smoothly through the configuration, step by step.

Device version

The FTI flow FB100 is available in a compact and remote mount design type. Compact: sensor and transmitter form one mechanical unit. Remote mount: sensor and transmitter are placed in separate housings. The housings are available as single-compartment or dual-compartment housings, depending on the requirements concerning the Exprotection type.

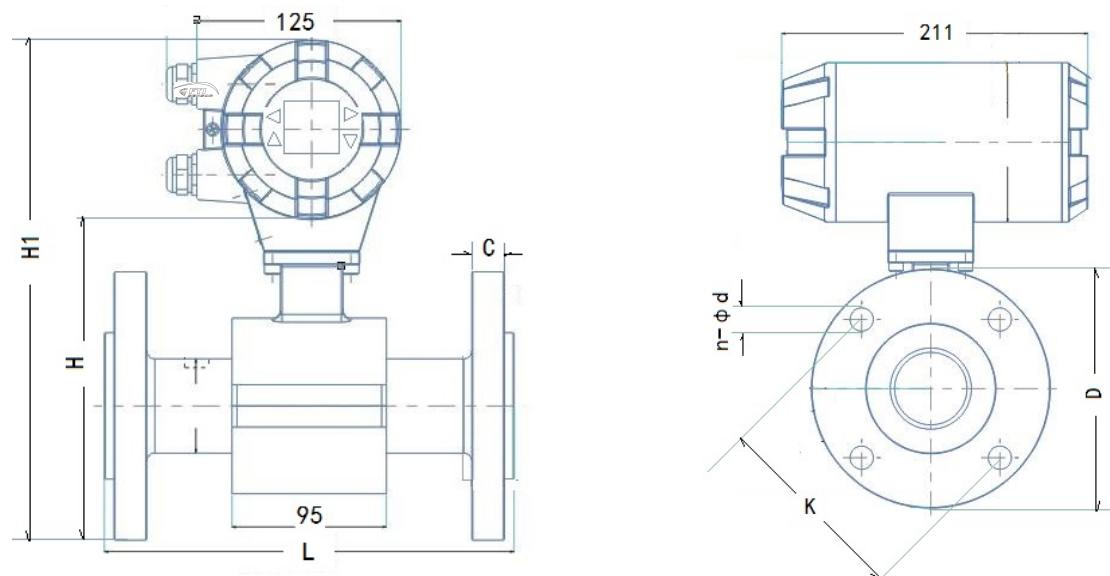
Transmitter

The back-lit display can be turned without additional tools. The contrast is adjustable and the display is fully configurable. The size of the characters, the number of lines, and the resolution of the display (decimal points) are variable. In multiplex mode, several display appearances can be flexibly preconfigured and called up in succession.

The intelligent module design of the transmitter slot enables simple dismantling without unscrewing cables or removing connectors.

Whether it is for counting pulses (active or passive), 20 mA (active or passive), status output (active or passive) – the universal transmitter always offers the right signal. The HART protocol is standard here.

Alternatively to the HART® protocol


Technical data

Design

FTI flow FB100 series – compact design

FB100	FB100
Transmitter: single-compartment housing sensor: Steel housing 	

Dimension Drawing

DN	L (mm)	H	H1	H2	D	K	n-Φ d	C	(Mpa)	(kg)
10	160	120	260	202	90	60	4-Φ 14	14	4.0	4.6
15	160	125	265	207	95	65	4-Φ 14	14		4.8
20	160	135	275	217	105	75	4-Φ 14	16		5.4
25	160	145	285	227	115	85	4-Φ 14	16		6.2
32	160	165	305	247	140	100	4-Φ 18	18		7.2
40	200	175	315	257	150	110	4-Φ 18	18		8.3
50	200	190	330	272	165	125	4-Φ 18	20		10
65	200	210	350	292	185	145	4-Φ 18	20	1.6	10.5
80	200	225	365	307	200	160	8-Φ 18	20		11.4
100	250	252	392	334	235	180	8-Φ 18	22		14.5
125	250	275	415	357	250	210	8-Φ 18	22		17.5
150	300	310	450	392	285	240	8-Φ 22	24		23
200	350	362	502	444	340	295	12-Φ 22	26		32
250	400	420	560	502	395	350	12-Φ 22	26		44
300	500	470	610	552	445	400	12-Φ 22	28	1.0	56
350	500	525	665	607	500	460	16-Φ 22	30		71
400	600	590	730	672	565	515	16-Φ 26	32		94
450	600	635	775	717	615	565	20-Φ 26	35		106
500	600	690	830	772	670	620	20-Φ 26	38		129
600	600	717	937	879	780	725	20-Φ 30	42		203
700	700	912	962	994	895	840	24-Φ 30	30		320
800	800	995	1045	1077	1010	950	24-Φ 34	32	0.6	450
900	900	1125	1175	1207	1110	1050	28-Φ 34	34		580
1000	1000	1135	1185	1217	1220	1160	28-Φ 36	34		700
1200	1200	1417	1467	1499	1405	1340	32-Φ 33	60		900
1400	1400	1640	1690	1722	1630	1560	36-Φ 36	68		1150
1600	1600	1840	1890	1922	1830	1760	40-Φ 36	76		1450
1800	1800	2055	2105	2137	2045	1970	44-Φ 39	84		1780

Telephone: +1 302 300 1919 • Fax: +1 302 300 1619

mail:sales@ftisensors.com FTI .Inc

1013 Centre Road, Suite 403S Wilmington, DE 19805

www.ftisensors.com

Model number	FB100
Measured value deviation	Standard: 0.5 % of the measured value Option: 0.25 % of the measured value
Nominal width range	DN 10 to 300 (3/8 to 12") - Aluminium housing DN 25 to 300 (1 to 12") - Steel housing
Process connection	Flange according to DIN 2501/EN 1092-1, ASME B16.5
Nominal pressure	PN 10, PN 16, PN 40, ASME CL150, ASME CL300
Lining	Hard rubber: DN 15 to 300 (1/2 to 12") - Aluminium housing Hard rubber: DN 40 to 300 (1 1/2 to 12") - Steel housing PTFE: DN 10 to 300 (3/8 to 12") - Aluminium housing PTFE: DN 25 to 300 (1 to 12") - Steel housing
Conductivity	> 5 μ S/cm, (20 μ S/cm for demineralized water)
Electrodes	Stainless steel, Hastelloy C, platinum-iridium, tantalum, titanium
Process connection material	Steel, stainless steel
Protection type	IP65, IP67
Medium temperature	Hard rubber: -15 to +90 °C (-5 to +194 °F) PTFE: -25 to +130 °C (-13 to +266 °F) PFA: -15 to +180 °C (-13 to +356 °F)
Approvals	
Electromagnetic compatibility	2004/108/EC – EMC 2014/30/EU – EMC
Communication	HART protocol (standard), PROFIBUS PA
Transmitter	
Voltage supply	AC 220 to 230 V (-15/+10 %), DC 24 V (-10/+10 %)
Current output	4 to 20 mA active or passive
Pulse output	Active or passive can be set using software on-site
Switching output	Optocoupler, programmable function
Switching input	Optocoupler, programmable function
Display	Graphical display, adjustable
Housing	Compact design, available as single-compartment or dual-compartment housing, depending on the requirements concerning the Ex-protection
Communication	HART protocol (standard), PROFIBUS-PA (option)
Electrical safety	According to DIN EN 61010-1
Electromagnetic compatibility	According to DIN EN 61326-1, DIN EN 61326-2-3

Specification - general

Reference conditions

According to EN 29104

Fluid temperature	20 °C (68 °F) ± 2 K
Ambient temperature	20 °C (68 °F) ± 2 K
Supply power	Nominal voltage acc. to name plate $U_n \pm 1\%$, frequency $f \pm 1\%$
Installation conditions	- Upstream $>10 \times DN$, straight section - Downstream $>5 \times DN$, straight section
Warm-up phase	30 min.

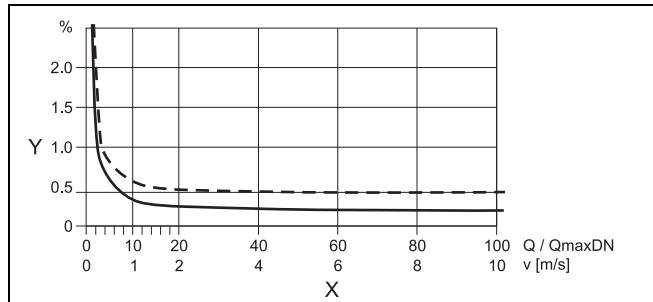


Fig. 1

Y Accuracy ± of measured value in [%]
X Flow velocity v in [m/s], $Q / Q_{\max DN}$ [%]

Maximum measuring error

Impulse output

- Standard calibration:
± 0.4 % of measured value,
± 0.02 % $Q_{\max DN}$ (DN 3 ... 2000)
- Optional calibration:
± 0.2 % of measured value,
± 0.02 % $Q_{\max DN}$ (DN 10 ... 600, 800)

Nominal width and measuring range

The measuring range end value can be configured between $0.02 \times Q_{\max DN}$ and $2 \times Q_{\max DN}$.

Nominal width		Minimum measuring range end value $0.02 \times Q_{\max DN}$ (≈ 0.2 m/s)	$Q_{\max DN}$	Maximum measuring range end value $2 \times Q_{\max DN}$ (≈ 20 m/s)
DN	Inch "		0 to ≈ 10 m/s	
10	3/8	0.9 l/min (0.24 US gal/min)	45 l/min (11.9 US gal/min)	90 l/min (23.78 US gal/min)
15	1/2	2 l/min (0.53 US gal/min)	100 l/min (26.4 US gal/min)	200 l/min (52.8 US gal/min)
20	3/4	3 l/min (0.79 US gal/min)	150 l/min (39.6 US gal/min)	300 l/min (79.3 US gal/min)
25	1	4 l/min (1.06 US gal/min)	200 l/min (52.8 US gal/min)	400 l/min (106 US gal/min)
32	1 1/4	8 l/min (2.11 US gal/min)	400 l/min (106 US gal/min)	800 l/min (211 US gal/min)
40	1 1/2	12 l/min (3.17 US gal/min)	600 l/min (159 US gal/min)	1200 l/min (317 US gal/min)
50	2	1.2 m ³ /h (5.28 US gal/min)	60 m ³ /h (264 US gal/min)	120 m ³ /h (528 US gal/min)
65	2 1/2	2.4 m ³ /h (10.57 US gal/min)	120 m ³ /h (528 US gal/min)	240 m ³ /h (1057 US gal/min)
80	3	3.6 m ³ /h (15.9 US gal/min)	180 m ³ /h (793 US gal/min)	360 m ³ /h (1585 US gal/min)
100	4	4.8 m ³ /h (21.1 US gal/min)	240 m ³ /h (1057 US gal/min)	480 m ³ /h (2113 US gal/min)
125	5	8.4 m ³ /h (37 US gal/min)	420 m ³ /h (1849 US gal/min)	840 m ³ /h (3698 US gal/min)
150	6	12 m ³ /h (52.8 US gal/min)	600 m ³ /h (2642 US gal/min)	1200 m ³ /h (5283 US gal/min)
200	8	21.6 m ³ /h (95.1 US gal/min)	1080 m ³ /h (4755 US gal/min)	2160 m ³ /h (9510 US gal/min)
250	10	36 m ³ /h (159 US gal/min)	1800 m ³ /h (7925 US gal/min)	3600 m ³ /h (15850 US gal/min)
300	12	48 m ³ /h (211 US gal/min)	2400 m ³ /h (10567 US gal/min)	4800 m ³ /h (21134 US gal/min)

Sensor

Temperatures

The temperature range of the device depends on various factors. These factors include the medium temperature, the ambient temperature, the operating pressure, the lining material, and the approvals for the Ex-protection.

Storage temperature

-40 to +70 °C (-40 to +158 °F)

Minimum admissible pressure depending on the medium temperature

Sensor housing made of aluminum (shell housing)

Lining	Nominal width	p _{operating abs}	at T _{operating} ^a
Hard rubber	DN 15 to 300 (1/2 to 12")	0 mbar	< 90 °C (194 °F)
PTFE	DN 10 to 300 (3/8 to 12")	270 mbar 400 mbar 500 mbar	< 20 °C (68 °F) < 100 °C (212 °F) < 130 °C (266 °F)

^a Higher temperatures are admissible for CIP/SIP cleaning for a limited time (see table „Maximum admissible cleaning temperature“, page 9).

Sensor housing made of steel

Lining	Nominal width	p _{operating abs}	at T _{operating} ^a
Hard rubber	DN 40 to 300 (1 1/2 to 12")	600 mbar	< 80 °C (176 °F)
PTFE	DN 25 to 300 (1 to 12")	270 mbar 400 mbar 500 mbar	< 20 °C (68 °F) < 100 °C (212 °F) < 130 °C (266 °F)

^a Higher temperatures are admissible for CIP/SIP cleaning for a limited time (see table „Maximum admissible cleaning temperature“, page 9).

Maximum admissible cleaning temperature

CIP cleaning	Lining Sensor	T _{max}	T _{max} minutes	T _{Amb}
Steam cleaning	PTFE	150 °C (302 °F)	60	25 °C (77 °F)
Liquids	PTFE	140 °C (284 °F)	60	25 °C (77 °F)

If the ambient temperature is > 25 °C, the difference must be subtracted from the max. cleaning temperature. T_{max} - Δ °C.

(Δ °C = T_{Amb} - 25 °C)

Maximum ambient temperature depending on the medium temperature

Compact design					
Lining	Flange material	Ambient temperature		Medium temperature	
		Minimum	Maximum	Minimum	Maximum
Hard rubber	Steel	-10 °C (14 °F)	60 °C (140 °F)	-10 °C (14 °F)	90 °C (194 °F)
Hard rubber	Stainless steel	-15 °C (5 °F)	60 °C (140 °F)	-15 °C (5 °F)	90 °C (194 °F)
PTFE	Steel	-10 °C (14 °F)	60 °C (140 °F) 45 °C (113 °F)	-10 °C (14 °F)	90 °C (194 °F) 130 °C (266 °F)
PTFE	Stainless steel	-20 °C (-4 °F)	60 °C (140 °F) 45 °C (113 °F)	-25 °C (-13 °F)	90 °C (194 °F) 130 °C (266 °F)

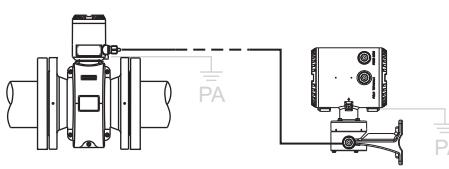
Remote mount design					
Lining	Nominal width	Ambient temperature		Medium temperature	
		Minimum	Maximum	Minimum	Maximum
Hard rubber	Steel	-10 °C (14 °F)	60 °C (140 °F)	-10 °C (14 °F)	90 °C (194 °F)
Hard rubber	Stainless steel	-15 °C (5 °F)	60 °C (140 °F)	-15 °C (5 °F)	90 °C (194 °F)
PTFE	Steel	-10 °C (14 °F)	60 °C (140 °F)	-10 °C (14 °F)	130 °C (266 °F)
PTFE	Stainless steel	-25 °C (-13 °F)	60 °C (140 °F)	-25 °C (-13 °F)	130 °C (266 °F)

Protection type according to EN 60529

Compact design (internal transmitter)	IP65, IP67
Remote mount design (external transmitter)	IP65, IP67

Pipeline vibration according to EN 60068-2-6

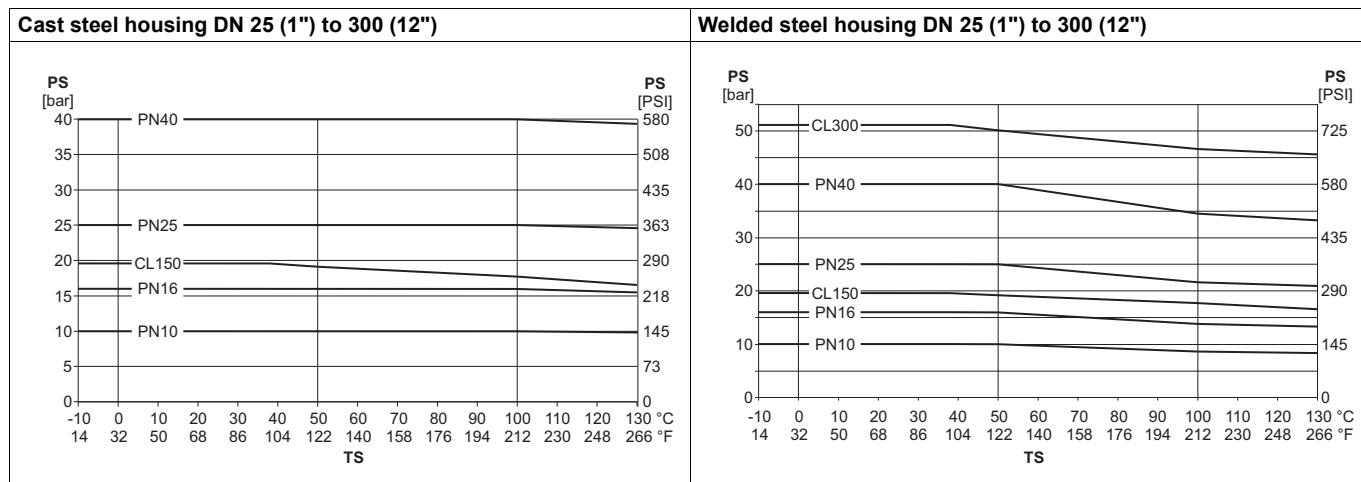
Valid for:


Compact design (With aluminum transmitter housing)	In the range 10 to 58 Hz max. 0.15 mm (0.006") amplitude
	In the range 58 to 150 Hz max. 2 g acceleration
Remote mount design (Sensor)	In the range 10 to 58 Hz max. 0.15 mm (0.006") amplitude
	In the range 58 to 150 Hz max. 2 g acceleration

Insertion length

The flanged devices comply with the insertion lengths specified according to VDI/VDE 2641, ISO 13359 or according to DVGW (work sheet W420, design WP, ISO 4064 short).

Signal cable length and preamplifier


For devices in the remote mount design, the electrical connection between the transmitter and sensor is made via a signal cable.

Transmitter housing design	Dual-compartment housing	
Maximum signal cable length		
Without preamplifier	10 m (164 ft)	
With preamplifier	-	
Scope of delivery	10 m (32.8 ft) permanently installed	

Telephone: +1 302 300 1919 • Fax: +1 302 300 1619
 mail: sales@ftisensors.com FTI .Inc
 1013 Centre Road, Suite 403S Wilmington, DE 19805
 www.ftisensors.com

Material load – sensor housing (steel)

Limits for the admissible fluid temperature (TS) and admissible pressure (PS) are determined by the used liner and flange materials of the device (see device nameplate).

Transmitter

Electrical properties

Voltage supply	AC 100 to 230 V (-15 %/+10 %) AC 24 V (-30 %/+10 %) DC 24 V (-30 %/+30 %), harmonics < 5 %
Supply frequency	47 to 64 Hz
Excitation frequency	6.25 Hz, 7.5 Hz, 12.5 Hz, 15 Hz, 25 Hz, 30 Hz (50/60 Hz voltage supply)
Power consumption	Sensor including transmitter AC S ≤ 20 VA (switch-on current 8.8 A at AC 230 V) DC P ≤ 12 W (switch-on current 5.6 A)
Electrical connection	Screw terminals (maximum 2.5 mm ² – AWG 14)

Empty pipe detection

Requirements for the function:

- Conductivity of the medium to be measured of $\geq 20 \mu\text{S}/\text{cm}$
- Signal cable length of $\leq 50 \text{ m}$ (164 ft)
- Sensor without preamplifier
- Nominal width DN $\geq \text{DN } 10$

Mechanical features

Compact design	
Housing	Aluminum casting, painted
Paint	Paint coat $\geq 80 \mu\text{m}$ thick
Cable fitting	Polyamide
Remote mount design	
Housing	Aluminum casting, painted
Paint	Paint coat $\geq 80 \mu\text{m}$ thick
Cable fitting	Polyamide
Weight	4.5 kg (9.92 lb)

Temperatures

Storage temperature	-40 to +70 °C (-40 to +158 °F)
Ambient temperature	-20 to +60 °C (-4 to +140 °F)

Protection type

Transmitter housing	IP65, IP67
---------------------	------------

Vibration according to EN 60068-2

Valid for:

Remote mount design (Transmitter)	In the range 10 to 58 Hz max. 0.15 mm (0.006") amplitude ^a In the range 58 to 150 Hz max. 2 g acceleration ^a
--------------------------------------	---

^a = Peak load

Mounting

Grounding

The grounding of the sensor is important both for safety reasons and for the electromagnetic flowmeter to function properly. The grounding screws of the sensor should be connected to protection conductor potential. For measurement reasons, this should be identical to the medium potential as far as possible.

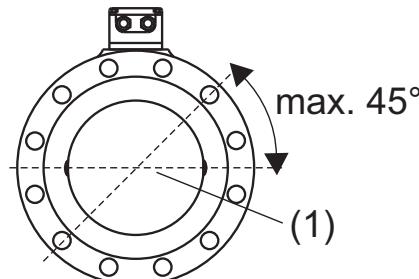
For plastic lines or pipelines with insulating lining, the grounding is via a grounding plate or grounding electrode. If the pipe section is not free from external interference voltages, it is recommended that one grounding plate is fitted in front of the sensor and one is fitted behind the sensor.

Installation

General information

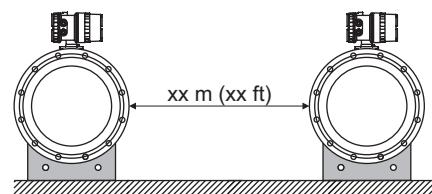
- The measuring pipe must always be full.
- The flow direction must match the identification marking
- The maximum torque for all flange screws must be observed. These must be selected according to factors including temperature, pressure, screw and seal material, and the relevant regulations in each case.
- Install the devices without any mechanical tension (torsion, bending).
- Fit flange devices with plane-parallel counterflanges only using the appropriate seals.
- Use a flange seal made from a material that is compatible with the medium and the medium temperature.
- Seals may not extend into the flow area, since any turbulence affects the device accuracy.
- The pipeline must not exert any inadmissible forces or torque on the device.
- Only remove the sealing plugs in the cable fittings when installing the electrical cables.
- Install remote mount transmitters at a location that is largely free of vibration.
- Do not expose the transmitter to direct sunlight; provide sun protection if necessary.

Telephone: +1 302 300 1919 • Fax: +1 302 300 1619


mail:sales@ftisensors.com FTI .Inc

1013 Centre Road, Suite 403S Wilmington, DE 19805

www.ftisensors.com

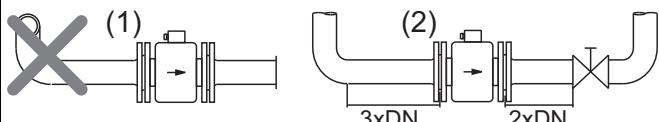

Electrode axis

- Electrode axis (1) horizontal if possible or rotated max. 45°.

Minimum clearance

- Maintain a minimum clearance of 0.7 m (2.3 ft) between the devices to prevent any mutual interference.

Inlet section, outlet section

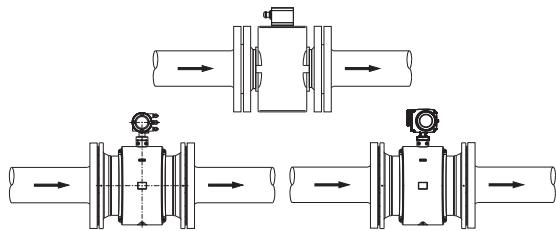

The measuring principle is independent of the flow profile as long as turbulence does not extend into the measurement zone, e.g. downstream from double elbows (1), in case of tangential inflow or where gate valves are partially open upstream of the sensor.

In these cases, measures must be taken to normalize the flow profile.

- Do not install fittings, elbows or valves, etc. directly upstream of the sensor (1).
- Flaps must be installed so that the flap blade does not extend into the sensor.
- Valves or other shut-off devices should be mounted in the outlet section (2).

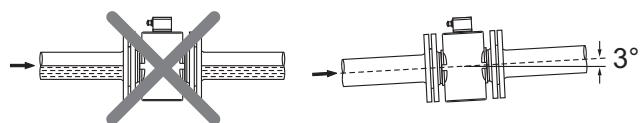
Experience has shown that a straight inlet section of $3 \times DN$ and a straight outlet section of $2 \times DN$ is sufficient in most cases (DN = nominal width of the transmitter – see the adjacent figure).

For test stands, the reference conditions of $10 \times DN$ for the straight inlet and $5 \times DN$ for the straight outlet must be provided according to EN 29104/ISO 9104.

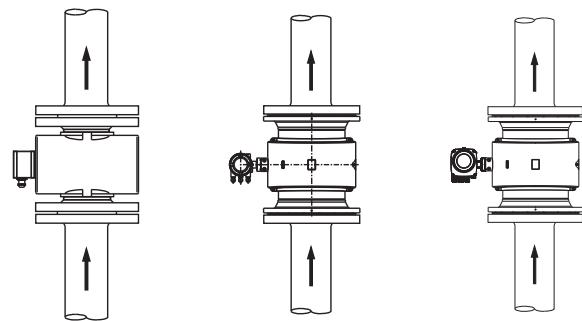

Flow direction

The device records the flow in both directions.

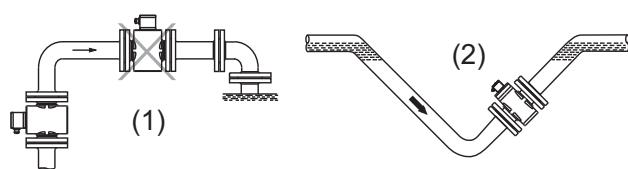
Default setting: forward flow direction


Identification marking:

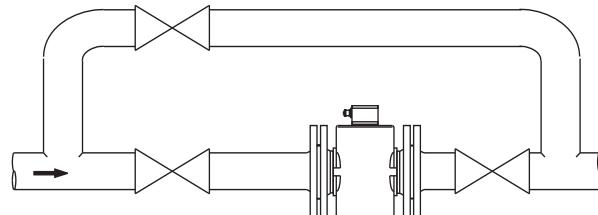
- Arrow direction on the device
- Alignment of the sensor housing during initial startup (default setting) as displayed in the adjacent figures


Horizontal flow direction

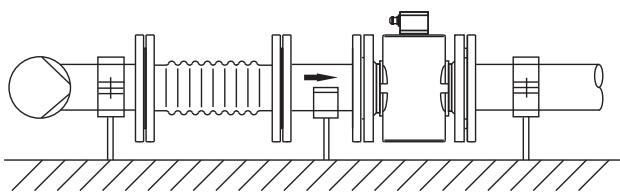
- Measuring pipe must always be full.
- Ensure the line is slightly inclined for degassing.


Vertical flow direction

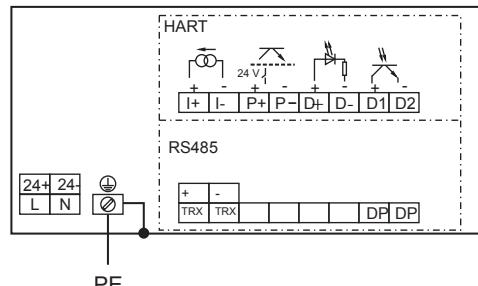
- Vertical installation for measuring abrasive substances, the preferred flow direction is from bottom to top.


Free inlet, free outlet

- For a free outlet, do not install the measuring device at the highest point or in the draining side of the pipeline, as the measuring pipe runs empty or air bubbles can form (1).
- For free inlets or outlets, provide a culvert (downward routing of the pipe) so that the pipeline is always full (2).


Heavily contaminated measurement media

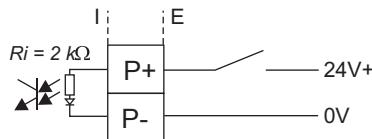
- We recommend a bypass connection, according to the figure, for heavily contaminated media so that the system can continue operating without any interruptions during mechanical cleaning.



Installation near pumps

- We recommend using mechanical vibration compensators for sensors that are installed near pumps or other equipment generating vibrations.

Electrical connection


Voltage supply

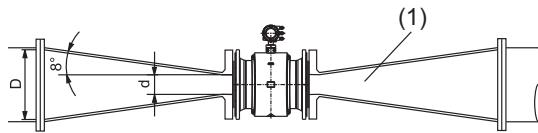
Alternating voltage (AC)		Direct voltage (DC)	
Terminal	Function	Terminal	Function
L	Phase	24V+	+
N	Neutral conductor	24V-	-
PE	Protection conductor (PE)	PE	Protection conductor (PE)

Input and output connection

Terminal	Function
I+/I-	Current/HART output - The current output is available in "active" or "passive" mode.
TRX-/+	RS485-/+
P+/P-	Digital output DO1 active/passive - Function can be configured using software on-site as "Pulse output" or "Binary output". The default setting is "Pulse output".
D+/D-	Switch output
D1/D2	Digital output DO2 passive - Function can be configured using software on-site as "Pulse output" or "Binary output". The default setting is "Binary output", flow direction signaling.
PE	Functional ground

Digital input DI1

Data of the optocoupler $16 \text{ V} \leq U \leq 30 \text{ V}$, $R_i = 2 \text{ k}\Omega$

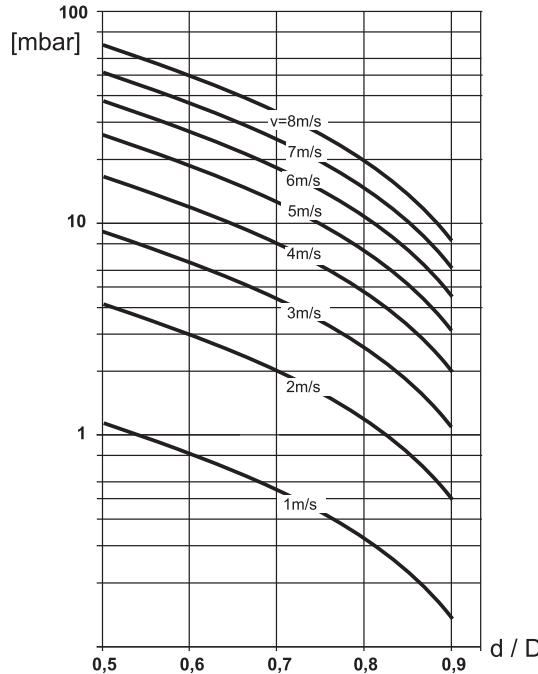

E.g. for external output switch-off or external totalizer reset

I = internal, E = external

Installation in pipelines with larger nominal widths

Determine the resulting pressure loss when using reducers (1):

1. Determine the diameter ratio d/D
2. Refer to the flow nomograph for the flow velocity (adjacent figure).
3. Read the pressure loss on the Y-axis in the flow nomogram.


(1) Flange transition piece

(d) Inner diameter of the flowmeter

(D) Inner diameter of the pipeline

Nomograph for pressure loss calculations

For flange transition piece with $\alpha/2 = 8^\circ$

(V) Flow velocity [m/s]

(Δp) Pressure loss [mbar]