

PMM330 Differential Pressure Transmitter

Features

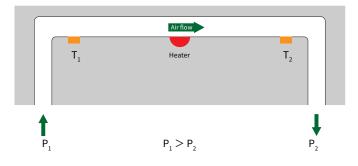
- Uses hot-wire type differential pressure sensor
- High sensitivity at low differential pressure, low zero-point drift, minimum measurable value as low as 1 Pa
- \bullet Pressure resistance up to 1 bar, differential pressure measurement range of \pm 50 ... \pm 1500 Pa
- Compact and easy to install
- Includes square root function for converting measurement into air velocity
- Provides analog output, optional RS-485 communication function
- DIP switch to adjust range and square root function

|Introduction|

The FTI PMM330 differential pressure transmitter is designed for small differential pressures and low air velocities. It uses a hot-wire type differential pressure sensor with excellent zero-point stability and the ability to detect small differential pressures, allowing for precise measurements at low air velocities. The built-in square root function is used for converting measurement in to air velocity, and it provides flexible output options, making it an ideal choice for various differential pressure measurement applications.

| Applications |

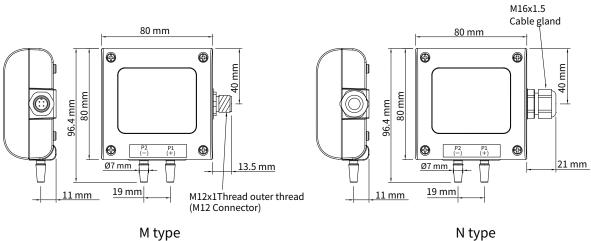
Environmental monitoring (Clean rooms, HVAC) / Differential pressure monitoring (Air ducts, filters) / Airflow monitoring


|Specification|

Measurement		Electrical			
Measuring element	Hot-wire type diff. pressure sensor, flow-through	Power supply	DC 24 V \pm 10 % & AC 24 V \pm 10 %		
Measuring range	±50 ±1500 Pa	Current consumption	DC 24 V : \leq 45 mA (Display) / \leq 40 mA (Non-display)		
			AC 24 V : \leq 95 mA (Display) / \leq 90 mA (Non-display)		
Output		Overvoltage protection	≦DC 40 V		
Output	4 20 mA / 0 10 V / RS-485	Electrical connection	M type (M12 - 4 PIN connector) / (M12 - 5 PIN connector)		
Signal connection	3-wire		N type (M16 plastic cable gland)		
Load resistance	Current output : $\leq 500 \Omega$		*M type with 2 m cable		
	Voltage output : ≧10 KΩ	Installation			
Response time	t63 ≦ 2 ms	Installation	Indoor wall type		
Display type	LCD module with back light, double line character				
Display range	Upon request, 2 decimal place	Protection			
	(as unit is Pa : 1 decimal place)	IP rating	IP65		
Digit height	5.56 mm	Electrical protection	■ Over-voltage		
			Reverse polarity		
Accuracy			Short circuit		
Accuracy	$\pm 1.5\%$ F.S. $\pm 3\%$ M.V.	Pressure resistance	1 bar		
Temperature influence	1% m.v. per 10°C	Burst pressure	3 bar		
Environment		Certification			
Measuring medium	Air	Certification	CE		
Operating temperature	0 50°C				
Operating humidity	0 95% (Non-condensing)	Material			
Storage temperature	-20 +60°C	Housing	PC fire-proof class(PC-110)(UL94V-2)		
		Weight	Display : 152g;Non-display : 127g		

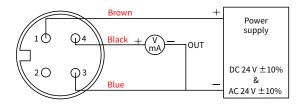
| Hot-wire Type Differential Pressure Principle |

Hot-wire type differential pressure measurement technology calculates the pressure difference by measuring the air flow rate. When there is a pressure difference between two measurement points, air flows from the high-pressure side to the low-pressure side through a channel inside the transmitter. The channel contains a heating element and two temperature sensors. By comparing the heating and temperature changes, the air flow rate can be precisely measured, which in turn allows the calculation of the pressure difference. This technology can detect extremely low air flow rates, making it possible to precisely measure small pressure differences. Additionally, hot-wire type measurement technology has the characteristic of low zero-point drift, meaning the transmitter can maintain a stable initial zero point even after prolonged use, ensuring measurement precision and reliability.

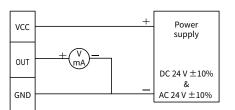


Pressure Unit Conversion Table

Unit	Ра	mbar	hPa	kPa	mmWS	inH ₂ O	mmHg
Range	±50/100	0.5 / 1	0.5 / 1	0.05 / 0.1	5/10	0.2 / 0.4	0.375 / 0.75
	±300/500	3/5	3/5	0.3 / 0.5	30 / 50	1.2 / 2	2.25 / 3.75
	±1000/1500	10/15	10/15	1/1.5	100 / 150	4 / 6	7.5 / 11.25



| Dimension |



M type

| Analog Diagram |

M12 - 4 PIN connector

M16 plastic cable gland - 3P Terminal